徐云整个人当即一愣: “枪虾?” 只见这叠文件的初始页上,赫然写着一段关于枪虾的介绍。 枪虾是一种非常神奇的虾类,它拥有一对不成比例的大小螯,猎食时会将巨螯迅速合上,喷射出一道时速接近每小时一百公里的高速水流,将猎物直接击晕甚至击杀。 当然了。 文件提及枪虾并不是为了做生物科普,而是为了引出后续的初始思路。 也就是…… 枪虾的声致发光现象。 声致发光这个概念最早可以追溯到1933年,罗马尼亚科学院的n. marinesco和法国科学院的j.j. trillat就独立发现过这个现象。 1934年德国科隆大学的h. frenzel和h. schultes在研究声纳时,为加速相片显影,便将一超声波变频器置入注满显影剂的水槽中。 没想到每当超声波开启时,液体中的气泡便发出光来,这就是多气泡声致发光现象。 虽然这个现象被反复多次确认,但是目前尚未有统一的理论能完美解释。 甚至截止到2024年,物理学界对一些声致发光的具体过程也无法达成一致。 比如有的研究者认为气泡在发光时瞬间温度高达100万k,也有计算认为只有2万k。 枪虾在发出水流的时候便会引发声致发光现象,从而发出一股特殊的‘虾光’。 而这种瞬发的超高温气泡……理论上恰好可以充作核聚变的载体。 在微观领域。 这种思路可以延伸成用μ子代替电子以减小原子半径来降低电磁壁垒,或者用磁单极子催化聚变。 “……” 徐云粗略的将文件翻了几遍,发现上头的初始引导某种意义上和μ子催化聚变有点类似,不过更多倾向于氧原子的特异作用。 也就是氧原子在某种因素下让别的元素的“高能同位素”变得更稳定,从而释放能量完成冷聚变。 “咦?” 看着看着,徐云的目光又停留到了其中的某个栏目上。 这个栏目上记录的是一张行迹有些古怪的粒子分布图,上头的能量密度数值大概在783k左右。 这个分布轨迹徐云隐隐有些熟悉,似乎像是…… 只见徐云意识到了什么,将这张图表朝面前挪了几厘米: “这是……孤点粒子?” 随后徐云揉了揉眼睛,集中精力再次核对了一遍,愈发肯定了自己的猜测。 没错。 此时这张图表上的粒子分布轨迹,赫然便是徐云熟悉无比的孤点粒子! 可是孤点粒子为什么会出现在这里呢…… 孤点粒子…… 冷核聚变…… 蓦然,徐云的瞳孔骤然放大了几分。 等等…… 冷核聚变的本质是赋予单个粒子聚变需要的能量,同时降低电磁壁垒的本质则是将壁垒变的更‘薄’,方便粒子冲过去…… 这种情况下。 如果有一颗可以完美起到气泡承载效果、同时可以瞬间从壁垒一侧移动到另一侧的粒子存在…… “妈耶……” 想通了这一点,徐云瞬间感觉一股酥麻感直冲天灵盖。 难怪…… 难怪大于可以搞定冷核聚变…… 他所依靠的实验粒子,正是原本历史中从未被人发现过的暗物质啊…… 聪明的同学应该都记得。 当初在基地第一次试验静电加速器的时候,王淦昌曾经发现过4685超子的迹象。(见629章) 而这颗超子,便是打开孤点粒子……也就M.NaNChAng791.COm